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Abstract. A stochastic model for the rate of conformational change in freely-jointed chain of
two regularly alternating kinds of beads joined by bonds with end effects is considered. Using
explicit transformations the exact time-dependent average length of bond vectors are derived as
a sum of exponentials involving roots of an underlying polynomial. These roots are calculated
explicitly using the properties of tridiagonal determinants, in contrast to numerical methods
where computational difficulties are encountered in finding the roots. Steady-state results are
deduced.

1. Introduction

The one-step (or generation–recombination or birth-and-death) processes are a special class
of Markov processes, which occur in many applications [1–5]. The master equation is
an equivalent form of the Chapman–Kolmogorov equation for Markov processes, but it is
easier to handle and it has a more direct physical interpretation. The master equation serves
to determine the resulting evolution of the system over long time periods. Many of the
concepts of stochastic theory are included in the derivation of the master equation [6–10].
It has applications in diverse physical problems such as time-dependent properties of gas-
phase relaxation processes [11], chemical kinetics [12], spin relaxation processes [13] and
polymer dynamics.

The translational, rotational and deformational motions of chain molecules result from
repeated local segmental rearrangements distributed randomly along the chain backbone.
A simple stochastic model for chain diffusion deals with a freely-jointed chain molecule
consisting of finite beads joined by equal length of bonds [14]. The most elementary
version deals with a freely-jointed chain, there being no correlations in the directions of
neighbouring links, and the local jump process is of an especially simple and restricted kind.
Models have also been treated which provide correlations between nearest-neighbour links,
and it is further shown that a certain kind of kinetic bias could also be introduced without
altering the nature of the results. An elegant formation has been offered by Iwata [15] who
considers more general local conformational rate processes in more realistic chains. After
a ‘coarse-graining’ operation on his basic master equation, he obtains, for sufficiently slow
motions, precisely the diffusion equation of the bead-and-spring model. Thus local-jump
models that appear on physical grounds are more attractive than beads and springs.

Stockmayeret al [16] have outlined the general nature of finite local-jump models
and extended the treatment to a broader class of local processes and to chains whose
elements do not all need to exhibit equiprobable tendencies to relaxation. They have
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found the exact average bond length for the basic model with the same kind of beads
and discussed a freely-jointed chain of two regularly alternating kinds of beads with the
structure. . .ABABAB . . . . All bonds have the same length, but the two kinds of beads have
jump ratesλ andµ alternating between neighbouring bonds. Ignoring the end effects they
found the approximate solution to evaluate the time-dependent average length of the bond
vectors. It is shown that the slow time-dependent behaviour of a flexible chain molecule is
phenomenologically invariant with respect to the fine details of its molecular structure, but
that for short times or high frequencies the individual structural features lead to differences
in relaxation behaviour.

The mathematical problems of equilibrium statistical mechanics are well defined,
because the equations involved are simple, and thus relatively straightforward techniques
can be employed. However, it is pertinent to study the time-dependent solution of systems
undergoing large-scale changes with time. The purpose of this paper is to obtain the
exact time-dependent average length of bond vectors for a finite local-jump model of
heterogeneous chain dynamics. The differential-difference equations are converted to a
system of difference equations using Laplace transforms. Then the average bond length
can be expressed as a rational function by studying the associated matrix equation. Certain
interesting transformations and identities of tridiagonal determinants yield the roots of the
denominator polynomials of the rational functions. Irrespective of the order of the matrices
involved, these roots are calculated analytically in closed form for this model; this is in
contrast to the usual numerical methods where computational difficulties are encountered in
finding the roots when the matrices become large. Making use of these roots, the solution
is obtained by inversion. It is observed that there is a significant difference in the time-
dependent solution when the number of bonds between beads are even or odd. Steady-state
results are deduced. The exact transient solutions have already been found for an infinite
local-jump model in terms of generalized modified Bessel functions [17].

2. Model description

Consider a chain molecule consisting of two regularly alternating kinds ofN + 2 beads,
joined byN+1 bonds. Label the beads from 0 toN+1 and the bonds from 0 toN . Without
loss of generality, we assume that initially each bond length isai such that

∑N
i=0 ai = 1.

The direction of the bond from bead(i − 1) to beadi is described by the unit vectorσi−1.
Thus, the configuration of a chain is specified by the set ofN + 1 vectorsσ0, σ1, . . . , σN .
To vary the chain conformation, beads are allowed to move one at a time. The motion of
beadi consists of a jump or ‘flip’ whereby the vectorsσi−1 and σi are changed to new
valuesσ ′i−1 andσ ′i .

Let the probability density inσ -space that the chain at timet has the conformation
{σ0, σ1, . . . , σN } ≡ {σN } be designated byp(σN, t). The nature of the treatment, though
differing in trivial details, is inspired by and similar to that of Glauber [18] for spin relaxation
on a linear Ising lattice. In this model we shall ignore correlations between neighbouring
bond vectors, so that the basic jump process for beadi depends only on the state of its
two bonds with the adjacent beads. Specifically, the length of a bond at a site either
changes to the length of the succeeding bond or changes to the length of the preceeding
bond. Let the conditional probability per unit time that a pair of adjacent bond vectors
σi and σi+1 rotate through an angleφ to the new conformationσ ′i and σ ′i+1 be denoted
by wi(σi, σi+1|σ ′i , σ ′i+1). The time evolution of the conformational probability density then
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follows the master equation [18]:

∂p(σN, t)

∂t
= −

∑
i

∫ ∫
p(σN, t)wi(σi, σi+1|σ ′i , σ ′i+1) dσ ′i dσ ′i+1

+
∑
i

∫ ∫ (
p(σ0, . . . , σ

′
i , σ
′
i+1, . . . , σN, t)

×wi(σ ′i , σ ′i+1|σi, σi+1)
)

dσ ′i dσ ′i+1. (1)

This is an expression of the fact that the rate of change of configuration of the bond vectors
in time is the difference between the rates of creation and annihilation. Letqj (t) be the
average length of bondj at time t . To extract simple results from the master equation
it is convenient to work with the average values of the bond vectors. Our interest is in
evaluating these time dependent average length values of the bond vectors, which we arrive
at by multiplying the master equation (1) byσj (t) and integrate over all configuration space,
i.e.

qj (t) ≡ 〈σj (t)〉 =
∫
· · ·
∫
σjp(σ

N, t) dσ0 · · ·dσN. (2)

Stockmayeret al [16] discussed a freely-jointed chain of two regularly alternating kinds
of beads, with the structure. . .ABABAB . . . . The local-jump process is described as a
rotation of beadsi about an axis passing through beadsi − 1 andi + 1. These two kinds
of beads have alternating jump ratesλ andµ, respectively. i.e. the forward and backward
jump rates for even labelled beads are respectivelyλ andµ, and these rates are reversed
for odd labelled beads. Ignoring the end effects they have found the approximate solution
to evaluate average length of bond vectors. By taking into consideration the end effects,
we have found the exact time-dependent average length of bond vectors. Because of the
alternating jump rates, the expressions of master equations is different for even numbered
bonds and odd numbered bonds. Incorporating our assumptions in equation (1), we obtain

q ′0(t) = −λq0(t)+ λq1(t) (3)

q ′j (t) =
{
λqj−1(t)− (λ+ µ)qj (t)+ µqj+1(t) j odd

µqj−1(t)− (λ+ µ)qj (t)+ λqj+1(t) j even

}
j = 1, 2, . . . , N − 1

(4)

q ′N(t) =
{
λqN−1(t)− λqN(t) N odd

µqN−1(t)− µqN(t) N even
(5)

with

qi(0) = ai ∀ i.
By setting the derivatives to zero on the left-hand sides of equations (3), (4) and (5), we find
that after a very long time the average values of the bond lengths are equal to 1/(N+1). We
observe that these equilibrium measures are independent of the jump rates and the position
of the bond vectors. The transient solutions differ considerably depending on whetherN

is odd or even. In sections 3 and 4 we derive the time-dependent average length of bond
vectors forN odd or even. First we consider the case when there are an even number
of bonds, i.e.N is odd. We observe that Laplace transforms are very helpful in changing
the differential-difference equations to difference equations, which are easily amenable to
analysis.
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3. Even number of bonds

Let ψn(s) be the Laplace transform ofqn(t). Then from equations (3), (4) and (5) we have

(s + λ)ψ0(s)− λψ1(s) = a0

−λψn−1(s)+ (s + λ+ µ)ψn(s)− µψn+1(s) = an n = 1, 3, . . . , N − 2

−µψn−1(s)+ (s + λ+ µ)ψn(s)− λψn+1(s) = an n = 2, 4, . . . , N − 1

−λψN−1(s)+ (s + λ)ψN(s) = aN .

(6)

This system of equations can be written as

A9 = [a0 a1 . . . aN ]′ (7)

where

A =


s + λ −λ · · · · · ·
−λ s + λ+ µ −µ · · · · ·
· −µ s + λ+ µ −λ · · · ·
· · · · · · · ·
· · · · · −µ s + λ+ µ −λ
· · · · · · −λ s + λ


N+1

and9 = [ψ0(s), ψ1(s), . . . , ψN(s)]′. Let Dr(s) be the determinant formed by ther × r
square matrix at the top left-hand corner of the matrixA. We define this subdeterminant
recursively as follows:

D0(s) = 1

D1(s) = s + λ

Dr(s) =
{
(s + λ+ µ)Dr−1(s)− λ2Dr−2(s) r even

(s + λ+ µ)Dr−1(s)− µ2Dr−2(s) r odd

}
r = 2, 3, . . . , N.

(8)

Now we obtain the transient solution for the case whenN is odd.

Theorem 1.WhenN is odd, then forj = 0, 1, . . . , N ,

qj (t) = 1

N + 1
+

N∑
k=1

{ j∑
i=0

ai(λµ)
(j−i)/2Cij

Di(sk)DN−j (sk)esk t

bk

+
N∑

i=j+1

ai(λµ)
(i−j)/2C−1

ij

Dj (sk)DN−i (sk)esk t

bk

}
(9)

where

s1 = −2λ

sk =


−(λ+ µ)−

√
(λ+ µ)2− 4λµ sin2(kπ/(N + 1)) 26 k 6 1

2(N + 1)

−(λ+ µ)+
√
(λ+ µ)2− 4λµ sin2(kπ/(N + 1)) 1

2(N + 3) 6 k 6 N
(10)

Cij =


√
λ/µ i even,j odd√
µ/λ i odd, j even

1 otherwise

(11)
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and

bk = sk
N∏
r=1
r 6=k

(sk − sr ) 16 k 6 N. (12)

Proof. To analyse9 in (7), roots of |A| = 0 are to be computed. Certain interesting
transformations and idendities of tridiagonal determinants (see the appendix) are used to
achieve this. Using identity A1

|A| = s

∣∣∣∣∣∣∣∣∣∣∣∣

s + 2λ −λµ · · · · · ·
−1 s + 2µ −λµ · · · · ·
· −1 s + 2λ −λµ · · · ·
· · · · · · · ·
· · · · · −1 s + 2µ −λµ
· · · · · · −1 s + 2λ

∣∣∣∣∣∣∣∣∣∣∣∣
N

.

By identity A4

|A| = s

φ

∣∣∣∣∣∣∣∣∣∣∣∣

θφ − λµ −λµ · · · · ·
−λµ θφ − 2λµ −λµ · · · ·
· −λµ θφ − 2λµ · · · ·
· · · · · · ·
· · · · −λµ θφ − 2λµ −λµ
· · · · · −λµ θφ − λµ

∣∣∣∣∣∣∣∣∣∣∣∣
(N+1)/2

whereθ = s + 2λ andφ = s + 2µ. Again applying identity A1

|A| = sθ

∣∣∣∣∣∣∣∣∣∣∣∣

θφ − 2λµ −λµ · · · · ·
−λµ θφ − 2λµ −λµ · · · ·
· −λµ θφ − 2λµ · · · ·
· · · · · · ·
· · · · −λµ θφ − 2λµ −λµ
· · · · · −λµ θφ − 2λµ

∣∣∣∣∣∣∣∣∣∣∣∣
(N−1)/2

.

Using identity A5

|A| = sθ
(N−1)/2∏
k=1

(
θφ − 2λµ− 2λµ cos

(
2kπ

N + 1

))
.

After considerable simplifications, we get

|A| = s(s + 2λ)
(N−1)/2∏
k=1

(
s2+ 2s(λ+ µ)+ 4λµ sin2

(
kπ

N + 1

))

= s
N∏
k=1

(s − sk) (13)

where thesk are given by (10). The roots = 0 gives the equilibrium solutions. Solving the
linear system of equation (7), forj = 0, 1, . . . , N we obtain

ψj(s) = 1

|A| ×
{ j∑
i=0

ai(λµ)
(j−i)/2CijDi(s)DN−j (s)

+
N∑

i=j+1

ai(λµ)
(i−j)/2C−1

ij Dj (s)DN−i (s)
}

(14)
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whereCij andDn(s) are given by (11) and (8), respectively. Expanding (14) in partial
fractions,

ψj(s) = qj

s
+

N∑
k=1

Ajk

(s − sk) j = 0, 1, . . . , N (15)

where theqj , j = 0, 1, . . . , N, are the equilibrium solutions and theAjk are constants yet
to be determined. On inverting (15) we obtain

qj (t) = qj +
N∑
k=1

Ajke
sk t j = 0, 1, . . . , N. (16)

In order to obtainqj andAjk we sets = 0, s = sk (16 k 6 N ) and

Dn(0) =
{
(λµ)n/2 n even

λ(λµ)(n−1)/2 otherwise

}
n = 1, 2, . . . , N (17)

in (14) and after considerable algebra, we get

qj = 1

N + 1
06 j 6 N (18)

and

Ajk = 1

bk

{ j∑
i=0

ai(λµ)
(j−i)/2Cij

Di(sk)DN−j (sk)
bk

+
N∑

i=j+1

ai(λµ)
(i−j)/2C−1

ij

Dj (sk)DN−i (sk)
bk

}
j = 0, 1, . . . , N (19)

where thebk are given by (12). Hence the theorem follows by substituting equations (18)
and (19) in (16). �

Next we obtain the transient solution for the case when there are odd number of bonds,
i.e. forN even.

4. Odd number of bonds

Taking the Laplace transform of equations (3), (4) and (5), we obtain

(s + λ)ψ0(s)− λψ0(s) = a0

−λψn−1(s)+ (s + λ+ µ)ψn(s)− µψn+1(s) = an n = 1, 3, . . . , N − 1

−µψn−1(s)+ (s + λ+ µ)ψn(s)− λψn+1(s) = an n = 2, 4, . . . , N − 2

−µψN−1(s)+ (s + µ)ψN(s) = aN .

(20)

Observe the subtle change between the set of equations (20) and (6). Equations (20) can
be written as

B9 = [a0 a1 . . . aN ]′ (21)

where

B =


s + λ −λ · · · · · ·
−λ s + λ+ µ −µ · · · · ·
· −µ s + λ+ µ −λ · · · ·
· · · · · · · ·
· · · · · −λ s + λ+ µ −µ
· · · · · · −µ s + µ


N+1

.



Local-jump heterogeneous chain of diatomic systems 6585

Let 1r(s) be the determinant formed by ther × r square matrix at the bottom right-hand
corner of the matrixB. We define this subdeterminant recursively as follows:

10(s) = 1

11(s) = s + µ

1r(s) =
{
(s + λ+ µ)1r−1(s)− µ21r−2(s) r even

(s + λ+ µ)1r−1(s)− λ21r−2(s) r odd

}
r = 2, 3, . . . , N.

(22)

Now we find the transient solution for the case whenN is even.

Theorem 2.WhenN is even, the transient solution forj = 0, 1, . . . , N are given by

qj (t) = 1

N + 1
+

N∑
k=1

{ j∑
i=0

aiCij
Di(xk)1N−j (xk)exkt

Vk
+

N∑
i=j+1

aiC
−1
ij

Dj (xk)1N−i (xk)exkt

Vk

}
(23)

where

xk =
 −(λ+ µ)−

√
(λ+ µ)2− 4λµ sin2(kπ/(N + 1)) 16 k 6 1

2N

−(λ+ µ)+
√
(λ+ µ)2− 4λµ sin2(kπ/(N + 1)) 1

2N < k 6 N
(24)

and

Vk = xk
N∏
r=1
r 6=k

(xk − xr) 16 k 6 N. (25)

Proof. To analyse9 in (21), roots of|B| = 0 are to be computed. Using identities A1,
A2, A3 and A5, we obtain

|B| = s
N/2∏
k=1

(
s2+ 2s(λ+ µ)+ 4λµ sin2

(
kπ

N + 1

))

= s
N∏
k=1

(s − xk) (26)

where thexk are given by (24). Now, solving the linear system of equation (21), for
j = 0, 1, . . . , N we obtain

ψj(s) = 1

|B| ×
{ j∑
i=0

ai(λµ)
(j−i)/2CijDi(s)1N−j (s)

+
N∑

i=j+1

ai(λµ)
(i−j)/2C−1

ij Dj (s)1N−i (s)
}

(27)

whereCij andDn(s) are given by equations (11) and (8), respectively. Hence the theorem
follows, by using

1n(0) =
{
(λµ)n/2 n even

µ(λµ)(n−1)/2 otherwise

}
n = 1, 2, . . . , N

and the arguments used in theorem 1. �
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Remark. The transient solution of average length of bonds are symmetric whenλ = µ,
qn(t) = qN−n(t) for all n and corresponding change in initial bond length of the chain.

5. Conclusion

Time-dependent analysis of master equations plays a vital role in several physical problems.
The exact transient solution for the conformational change in a freely jointed chain with
different jump rates between alternating kinds of beads is outlined, for the first time. The
above solution involves roots, namely thesk andxk, which are found analytically in closed
form irrespective of the order of the matrices involved. This is in contrast to numerical
methods, where computational difficulties are encountered in calculating some values of the
parameters, because the diagonal elements of the underlying matrix become large, making
the roots large and thus causing overflow while running the program. We observe that there
is a significant change in the transient solution whenN is odd or even. Also we observe
that the steady-state measures are independent of jump rates and the position of the bond
vectors.
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Appendix

Here we give some identities of tridiagonal determinants [19] which are useful in finding
the time-dependent solution of the model under consideration.

Identity A1.∣∣∣∣∣∣∣∣∣∣∣∣

A+ a0 a0 · · · · · ·
b1 A+ a1+ b1 a1 · · · · ·
· b2 A+ a2+ b2 a2 · · · ·
· · · · · · · ·
· · · · · bn−1 A+ an−1+ bn−1 an−1

· · · · · · bn A+ bn

∣∣∣∣∣∣∣∣∣∣∣∣
n+1

= A×

∣∣∣∣∣∣∣∣∣∣∣∣

g0 b1 · · · · · ·
a1 g1 b2 · · · · ·
· a2 g2 b3 · · · ·
· · · · · · · ·
· · · · · an−2 gn−2 bn−1

· · · · · · an−1 gn−1

∣∣∣∣∣∣∣∣∣∣∣∣
n

wheregj = A+ aj + bj+1, j = 0, 1, . . . , n− 1.
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Identity A2.∣∣∣∣∣∣∣∣∣∣∣∣

θ1 d1 · · · · · ·
−1 φ d2 · · · · ·
· −1 θ2 d3 · · · ·
· · · · · · · ·
· · · · · −1 θm d2m−1

· · · · · · −1 φ

∣∣∣∣∣∣∣∣∣∣∣∣
2m

=

∣∣∣∣∣∣∣∣∣∣∣∣

γ1 d1 · · · · · ·
d2 γ2 d3 · · · · ·
· d4 γ3 d5 · · · ·
· · · · · · · ·
· · · · · d2m−4 γm−1 d2m−3

· · · · · · d2m−2 γm

∣∣∣∣∣∣∣∣∣∣∣∣
m

whereγj = d2j−2+ θjφ + d2j−1, j = 1, 2, . . . , m with d0 = 0.

Identity A3.∣∣∣∣∣∣∣∣∣∣∣∣

y0 a1 · · · · · ·
a2 y1 a3 · · · · ·
· a4 y2 a5 · · · ·
· · · · · · · ·
· · · · · an−4 y(n−4)/2 an−3

· · · · · · an−2 y(n−2)/2

∣∣∣∣∣∣∣∣∣∣∣∣
n/2

=

∣∣∣∣∣∣∣∣∣∣∣∣

x a1 · · · · · ·
−1 x a2 · · · · ·
· −1 x a3 · · · ·
· · · · · · · ·
· · · · · −1 x an−1

· · · · · · −1 x

∣∣∣∣∣∣∣∣∣∣∣∣
n

whereyj = x2+ a2j + a2j+1, j = 0, 1, . . . , (n− 2)/2 with a0 = 0.

Identity A4.∣∣∣∣∣∣∣∣∣∣∣∣

θ1 d1 · · · · · ·
−1 φ d2 · · · · ·
· −1 θ2 d3 · · · ·
· · · · · · · ·
· · · · · −1 φ d2m−2

· · · · · · −1 θm

∣∣∣∣∣∣∣∣∣∣∣∣
2m−1

= 1

φ

∣∣∣∣∣∣∣∣∣∣∣∣

γ1 d1 · · · · · ·
d2 γ2 d3 · · · · ·
· d4 γ3 d5 · · · ·
· · · · · · · ·
· · · · · d2m−4 γm−1 d2m−3

· · · · · · d2m−2 γm

∣∣∣∣∣∣∣∣∣∣∣∣
m

whereγj = d2j−2+ θjφ + d2j−1, j = 1, 2, . . . , m with d0 = 0 andd2m−1 = 0.
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Identity A5. ∣∣∣∣∣∣∣∣∣∣∣∣

A a · · · · · ·
b A a · · · · ·
· b A a · · · ·
· · · · · · · ·
· · · · · b A a

· · · · · · b A

∣∣∣∣∣∣∣∣∣∣∣∣
N

=
N∏
j=1

(
A− 2

√
ab cos

(
jπ

N + 1

))
.
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